Reg. No. :							TIII					
------------	--	--	--	--	--	--	------	--	--	--	--	--

Question Paper Code: 30541

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2024.

Seventh Semester

Electronics and Communication Engineering

EC 8701 — ANTENNAS AND MICROWAVE ENGINEERING

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Define Gain and Directivity of antenna.
- 2. What is mean by Near Field and Far-Field regions?
- 3. Find radiation resistance of a loop antenna with diameter 0.5 m operating at 1 MHz.
- 4. List the important advantages of microstrip antennas.
- 5. Define pattern multiplication.
- 6. How to reduce the side lobe levels of an antenna?
- 7. What are slow wave structures? Give examples.
- 8. A directional coupler is having coupling factor of 20 dB and directivity of 40 dB. If the incident power is 100 mW. What is coupled power?
- 9. What are the considerations in selecting a matching network?
- 10. Define unilateral power gain.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) With a neat illustration, explain the concept of

(i) Radiation pattern

(ii) Antenna Temperature

(iii) Aperture Efficiency

(4)

- (b) (i) Explain the radio communication link with transmitting antenna and receiving antenna. (6)
 - (ii) Discuss the importance of impedance matching in antennas. (7)
- 12. (a) Explain the working principle of parabolic reflectors. Explain the various feed techniques with their relative merits and demerits. Discuss the role of f/d ratio in the parabolic reflectors.

Or

- (b) Explain Rumsey's principles and describe the design procedure for the construction of log periodic antenna.
- 13. (a) Derive array factor of a uniform linear array and also explain its significance.

Or

- (b) Derive the field equations for array of two-point sources with spacing $\frac{\lambda}{2}$ with equal amplitude and phase. Also, derive the direction of maximum, minimum and half power point directions.
- 14. (a) Explain the working of magic tee and also derive scattering matrix for it.

Or

- (b) Explain the working principle of gunn diode and describe its various modes of operations.
- 15. (a) The S-parameters for a transistor is given below. Determine its stability and draw the input and output stability circles using smith chart.

$$S_{11} = 0.385 \angle -53^{\circ}, S_{12} = 0.045 \angle 90^{\circ}, S_{21} = 2.7 \angle 78^{\circ} \text{ and } S_{22} = 0.89 \angle -26.5^{\circ}.$$

Or

(b) An RF amplifier has the following S-parameters: $S_{11} = 0.3 \angle -70^\circ$, $S_{21} = 3.5 \angle 85^\circ$, $S_{12} = 0.2 \angle -10^\circ$ and $S_{22} = 0.4 \angle -45^\circ$. Furthermore, the input side of the amplifier is connected to a voltage source with $V_S = 5 \ V$ and source impedance $Z_S = 40 \ \Omega$. The output is utilized to drive an antenna which has an amplifier of $Z_I = 73 \ \Omega$. Determine transducer gain G_T , unilateral transducer gain G_{TU} , available gain G_A , Operating gain G.

2

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Design a transistor oscillator at 4 GHz using a GaAs FET in a common gate configuration, with a 5 nH inductor in series with the gate to increase the instability. Choose a terminating network to match to a 50 Ω load and an appropriate tuning network. The S-parameters of the transistor in a common source configuration are $(Z_0 = 50 \ \Omega)$: $S_{11} = 0.72 \angle -116^\circ$, $S_{21} = 2.6 \angle 76^\circ$, $S_{12} = 0.03 \angle 57^\circ$ and $S_{22} = 0.73 \angle -54^\circ$.

Or

(b) A GaAs FET is blased for minimum noise figure and has the following S parameters and noise parameters at 4 GHz ($Z_0 = 50~\Omega$): $S_{11} = 0.6 \angle -60^\circ$, $S_{21} = 1.9 \angle 81^\circ$, $S_{12} = 0.05 \angle 26^\circ$ and $S_{22} = 0.5 \angle -60^\circ$, $F_{\min} = 1.6~dB$, $\Gamma_{opt} = 0.62 \angle 100^\circ$, $F_{\min} = 20~\Omega$. For design purposes, assume the device is unilateral and calculate the maximum error in G_T resulting from this assumption. Then design an amplifier having a 2 dB noise figure with the maximum gain that is compatible with this noise figure.